Информатика на пять О нас
 Добавить в избранное
5byte.ru
 Теория
 8 класс
 9 класс
 10 класс
 11 класс
Задания
 8 класс
 9 класс
 10 класс
 11 класс
Книги
Тесты
ЕГЭ
Turbo Pascal 7
 Описание
 Задачи
HTML
Рефераты

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Перевод чисел между системами счисления, основания которых являются степенями числа 2 (q = 2n), может производиться по более простым алгоритмам. Такие алгоритмы могут применяться для перевода чисел между двоичной (q = 21), восьмеричной (q = 23) и шестнадцатеричной (q = 24) системами счисления.

Перевод чисел из двоичной системы счисления в восьмеричную. Для записи двоичных чисел используются две цифры, то есть в каждом разряде числа возможны 2 варианта записи. Решаем показательное уравнение:

2 = 2i . Так как 2 = 21, то i = 1 бит.

Каждый разряд двоичного числа содержит 1 бит информации.

Для записи восьмеричных чисел используются восемь цифр, то есть в каждом разряде числа возможны 8 вариантов записи. Решаем показательное уравнение:

8 = 2i . Так как 8 = 23, то i = 3 бита.

Каждый разряд восьмеричного числа содержит 3 бита информации.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то необходимо ее дополнить слева нулями.

Переведем таким способом двоичное число 1010012 в восьмеричное:

101    0012 => 1 × 22 + 0 × 21 + 1 × 20         0 × 22 + 0 × 21 + 1 × 20 => 518.

Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных триад (групп по 3 цифры) в восьмеричные цифры:

Двоичные триады 000 001 010 011 100 101 110 111
Восьмеричные цифры 0 1 2 3 4 5 6 7

Для перевода дробного двоичного числа (правильной дроби) в восьмеричное необходимо разбить его на триады слева направо и, если в последней, правой, группе окажется меньше трех цифр, дополнить ее справа нулями. Далее необходимо триады заменить на восьмеричные числа.

Например, преобразуем дробное двоичное число А2 = 0,1101012 в восьмеричную систему счисления:

Двоичные триады 110 101
Восьмеричные цифры 6 5

Получаем: А8 = 0,658.

Перевод чисел из двоичной системы счисления в шестнадцатеричную. Для записи шестнадцатеричных чисел используются шестнадцать цифр, то есть в каждом разряде числа возможны 16 вариантов записи. Решаем показательное уравнение:

16 = 2i . Так как 16 = 24, то i = 4 бита.

Каждый разряд шестнадцатеричного числа содержит 4 бита информации.

Таким образом, для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры (тетрады), начиная справа, и, если в последней левой группе окажется меньше четырех цифр, дополнить ее слева нулями. Для перевода дробного двоичного числа (правильной дроби) в шестнадцатеричное необходимо разбить его на тетрады слева направо и, если в последней правой группе окажется меньше четырех цифр, то необходимо дополнить ее справа нулями.

Затем надо преобразовать каждую группу в шестнадцате-ричную цифру, воспользовавшись для этого предварительно составленной таблицей соответствия двоичных тетрад и шестнадцатеричных цифр.

Переведем целое двоичное число А2 = 1010012 в шестнадцатеричное:

Двоичные тетрады 0010 1001
Шестнадцатеричные цифры 2 9

В результате имеем: А16 = 2916.

Переведем дробное двоичное число А2 =0,1101012 в шестнадцатеричную систему счисления:

Двоичные тетрады 1101 0100
Шестнадцатеричные цифры D 4

Получаем: А16 = 0,D416.

Для того чтобы преобразовать любое двоичное число в восьмеричную или шестнадцатеричную системы счисления, необходимо произвести преобразования по рассмотренным выше алгоритмам отдельно для его целой и дробной частей.

Перевод чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную. Для перевода чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную необходимо цифры числа преобразовать в группы двоичных цифр. Для перевода из восьмеричной системы в двоичную каждую цифру числа надо преобразовать в группу из трех двоичных цифр (триаду), а при преобразовании шестнадцатеричного числа - в группу из четырех цифр (тетраду).

Например, преобразуем дробное восьмеричное число А8 = 0,478 в двоичную систему счисления:

Восьмеричные цифры 4 7
Двоичные триады 100 111

Получаем: А2 = 0,1001112 .

Переведем целое шестнадцатеричное число А16 = АВ16 в двоичную систему счисления:

Шестнадцатеричные цифры А В
Двоичные тетрады 1010 1011

В результате имеем: А2 = 101010112



3адания

1.16. Составить таблицу соответствия двоичных тетрад и шестнадцатеричных цифр.

1.17. Перевести в восьмеричную и шестнадцатеричную системы счисления следующие целые числа: 11112, 10101012 .

1.18. Перевести в восьмеричную и шестнадцатеричную системы счисления следующие дробные числа: 0,011112, 0,101010112 .

1.19. Перевести в восьмеричную и шестнадцатеричную системы счисления следующие числа: 11,012, 110,1012 .

1.20. Перевести в двоичную систему счисления следующие числа: 46,278, ЕF,1216 .

1.21. Сравнить числа, выраженные в различных системах счисления: 11012 и D16; 0,111112 и 0,228; 35,638 и 16,С16.





 У Вас есть материал пишите нам
 
    Copyright © 2008    
  Top.Mail.Ru